Skip to contents

Applies a Gaussian smoothing filter to reduce noise while better preserving image features compared to a simple mean filter.

Usage

wbw_gaussian_filter(x, sigma = 0.75)

Arguments

x

Raster object of class WhiteboxRaster. See wbw_read_raster() for more details.

sigma

double, standard deviation distance parameter in units of grid cells. Should be in the range 0.5-20.

Value

WhiteboxRaster object containing filtered values

Details

The filter applies a 2D Gaussian kernel that weights pixels based on their distance from the center. This gradual weighting makes it more effective for noise reduction than the mean filter. The filter size is controlled by the sigma parameter (0.5-20 grid cells).

Examples

f <- system.file("extdata/dem.tif", package = "wbw")
wbw_read_raster(f) |>
  wbw_gaussian_filter(sigma = 1.5)
#> +-----------------------------------------------+ 
#> | WhiteboxRaster                                |
#> | dem.tif                                       |
#> |...............................................| 
#> | bands       : 1                               |
#> | dimensions  : 726, 800  (nrow, ncol)          |
#> | resolution  : 5.002392, 5.000243  (x, y)      |
#> | EPSG        : 2193  (Linear_Meter)            |
#> | extent      : 1925449 1929446 5582091 5585717 |
#> | min value   : 65.599586                       |
#> | max value   : 358.003418                      |
#> +-----------------------------------------------+